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Abstract. The electromagnetic radius of a charged pion and the transition radius of a neutral pion are
calculated in the framework of the nonlocal chiral quark model. It is shown in this model that the vector
meson contributions to the pion radii are noticeably suppressed in comparison with a similar contribution in
the local Nambu–Jona-Lasinio model. The form factor for the process γ∗π+π− is calculated for −1 GeV2<
q2 < 1.6 GeV2. Our results are in satisfactory agreement with experimental data.

PACS. 14.40.-n Mesons – 11.10.Lm Nonlinear or nonlocal theories and models – 12.39.Ki Relativistic
quark model

1 Introduction

In our works [1,2] the nonlocal chiral quark model with
quark form factors of the Gaussian type was proposed.
This approach is the development of the nonlocal quark
models considered in [3–5]. These models are nonlocal ex-
tensions of the well-known Nambu–Jona-Lasinio (NJL)
model with local quark interaction [6,7]. However, with
nonlocal form factors, quark loops are free of ultraviolet
(UV) divergences and it is possible to implement the quark
confinement. Moreover, the nonlocal structure may be mo-
tivated [4] by fundamental QCD interactions induced by
the instanton and gluon exchanges [8–10], which leads to
spontaneous breaking of the chiral symmetry, solves the
UA (1) problem and dynamically generates a momentum-
dependent quark mass. The use of a covariant nonlocal
low-energy quark model based on a self-consistent ap-
proach to the dynamics of quarks has many attractive fea-
tures: it preserves gauge invariance, it is consistent with
the low-energy theorems as well as takes into account the
large-distance dynamics controlled by bound states [3,4,
11,12]. Masses and strong decays of the scalar, vector and
axial-vector mesons were considered earlier in [1–3].

Nonlocal models, in contrast with the local NJL model,
can be successfully used for the description of not only the
constant part of amplitudes of meson interactions but also
of the momentum expansion of amplitudes at small ener-
gies. With the help of these expansions it is possible to
describe a set of important meson properties: electromag-
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netic radii, electric and magnetic polarizabilities, meson-
meson scattering lengths, slope parameters and so on.

In the standard local NJL models [6,7] such expan-
sions are not valid and can lead to incorrect results. In
order to demonstrate this, let us consider the calculation
of the pion radius. The expansion of the triangle quark
diagram (fig. 3a below) with two pions and one photon
connected locally to quark lines1 leads to a satisfactory
agreement with experimental data [13–15]. However, in
addition, it is necessary to take into account the contribu-
tion of the diagram with the intermediate ρ-meson, fig. 3e.
In the framework of the local NJL model this contribution
is comparable with that of the contact diagram. As a re-
sult, we obtain a too large value for the pion radius which
is in disagreement with experimental data [15]. Some au-
thors attempted to solve this problem, using different ap-
proaches. Some of them ignored this contribution [14,16]
while the others used special methods beyond the stan-
dard local NJL model [15,17,18].

In this work, we demonstrate that this problem can be
solved in the framework of the nonlocal models without
any additional assumption. In these models, the contri-
bution of the diagrams with intermediate vector mesons
is shown to be suppressed. It is essentially smaller than
the contribution of the contact diagram. However, with-
out ρ-meson diagrams it is impossible to describe the form
factor of the process γ∗π+π− in the time-like region. Our
results are in satisfactory agreement with experimental
data.

1 In the following this kind of diagrams will be called contact
diagrams.
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Notice, that similar calculations in the framework of
nonlocal models of different kind were also performed in
other works (see, e.g., [3,11,19–21]).

2 Nonlocal quark-meson Lagrangian and
model parameters

The calculations are carried out in the effective chiral
model with nonlocal quark-quark interaction, which is
made covariant by the inclusion of the P -exponents in
the nonlocal-interaction vertex2. A specific prescription
for the Wilson lines and their differentiation follows ex-
actly refs. [5,11]. The nonlocal SU(2)×SU(2) symmetric
quark-meson Lagrangian is given by

L(q, q̄, σ, π, ρ, ω,A) = −πa(x)2 + σ̃(x)2

2G1
(1)

+
(ρµ a(x))2 + (ωµ(x))2

2G2
+ q̄(x)(i∂̂x − eQÂ(x))q(x)

+
∫

d4x1d4x2 f(x− x1)f(x2 − x)q̄(x1)E(x1, x) (σ̃(x)

+πa(x)iγ5τa + ρµ a(x)γµτa + ωµ(x)γµ
)
E(x, x2)q(x2),

E(x, y) = Pexp


−ieQ

y∫
x

Aµ(z)dzµ


 ,

where τa are the Pauli matrices and γµ, γ5 are the Dirac
matrices; q̄(x) = (ū(x), d̄(x)) are the u- and d-quark fields;
σ̃(x), π(x), ρ(x), ω(x) are the σ-, π-, ρ-, ω-meson fields,
respectively; Aµ(x) is the photon field; Q = 1/2(τ3 + 1/3)
is the electric charge operator, G1, G2 are the dimensional
constants of the four-quark interaction, and E(x, y) is the
Schwinger phase factor.

The field σ̃(x) has a nonzero vacuum expectation
value 〈σ̃〉0 = σ0 �= 0. In order to obtain a physical scalar
field with zero vacuum expectation value, it is necessary
to shift the scalar field as σ̃(x) = σ(x) + σ0. In the
momentum representation this leads to the appearance
of the dynamical quark mass function m(p) = −σ0f

2(p).
From the condition of absence of the linear σ term in
the Lagrangian (1) one obtains the gap equation for the
dynamical quark mass

m(p) = f2(p)G1
8Nc

(2π)4

∫
d4

Ekf2(k)
m(k)

k2 + m2(k)
, (2)

where Nc is the number of colors. This and further equa-
tions are given in the Euclidean space. For numeric esti-
mates of the nonlocal effects we shall use the momentum-
dependent dynamical mass defined by condition [2]

m2(p)
m2(p) + p2

= exp
(−p2/Λ2

)
. (3)

This choice, following similar considerations given
in [3,5,20], provides quark confinement. Indeed, the

2 In the description of this section we follow [2].
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Fig. 1. Photon vertices: a) the local vertex; b, c) quark-photon
and quark-photon-meson nonlocal vertices.
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�Fig. 2. Diagrams describing vector-meson–photon mixing.

expression for m(p) is found to be

m(p) =
(

p2

exp (p2/Λ2) − 1

)1/2

; (4)

it depends only on one free parameter Λ, has no any
singularities in the whole real axis and exponentially
drops as p2 → ∞ in the Euclidean domain. From eq. (2)
it follows that nonlocal form factors have similar behavior
providing the absence of UV divergences in the model. At
p2 = 0 the mass function is equal to the cut-off parameter
Λ, m(0) = Λ, which is a specific feature of the model [2].
From the gap equation we find the relation between four-
quark coupling, G1, and the nonlocality parameter, Λ ,

G1 =
2π2

Nc

1
Λ2

. (5)

The expressions for meson renormalization functions
are found from the consideration of meson polarization
operators. For the following calculations we need only the
values of these functions at p2 = 0 where they take the
form

g−2
π (0) =

Nc

4π2

(
3
8

+
ζ(3)

2

)
, gπ(0) ≈ 3.7, (6)

g2
ρ(0) =

M2
ρ

G−1
2 + ΠT

ρ (0)
, gρ(0) = gω(0), (7)

where ζ is the Riemann zeta-function, ΠT
ρ (p) is the

transversal part of the ρ-meson polarization operator. In
the chiral limit one has two arbitrary parameters Λ, G2.
We fix their values with help of the weak pion decay con-
stant fπ = 93 MeV, and ρ-meson mass Mρ = 770 MeV. By
using the Goldberger-Treiman relation gπ(0) = m(0)/fπ

one finds Λ = m(0) = 340 MeV. The constant G2 is found
as G−1

2 = −ΠT
ρ (Mρ). Fitting this value to the ρ-meson

mass we obtain G2 = 6.5 GeV−2 that corresponds to the
coupling g2

ρ(0) ≈ M2
ρG2 ≈ 4.

Apart from the usual local quark-photon vertex in the
Lagrangian (1) there appear quark-photon and quark-
photon-meson nonlocal vertices generated by Pexp (see
fig. 1). The details of calculation of these vertices can be
found in [3,4,11,19]. The explicit form of the vertices ap-
pearing in the diagrams describing photon–vector-meson
transitions (see fig. 2) is given in appendix A.
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Fig. 3. Diagrams describing the charged-pion radius: a) the
local contribution; b-d) nonlocal contributions; e) the diagrams
with the ρ-meson.

3 Electromagnetic radius of the charged pion

The diagrams describing the charged-pion radius are pre-
sented in fig. 3. The quark loop diagrams with local and
nonlocal photon vertices (contact diagrams) are given in
the figs. 3a-d and the diagram with the intermediate
ρ-meson is drawn in fig. 3e. The amplitude for the pro-
cess has the form

Tγ∗π+π− = e(p+ + p−)µAµ(q)π+(p+)π−(p−)Fγ∗π+π−(q2),
(8)

where Fγ∗π+π−(q2) is the pion form factor and q = p+ −
p−. The electromagnetic pion radius 〈r2〉e.m. is defined by

〈r2〉e.m. = −6
dFγ∗π+π−(q2)

dq2

∣∣∣∣
q2=0

.

In the local NJL model the contact diagram gives
about 80% of the correct value for the pion radius [13,15].
Therefore, taking into account the diagram with interme-
diate ρ-meson [15] leads to a too large value for the pion
radius in comparison with the experimental value [22]. In-
deed, in the local NJL model one has

〈r2〉NJL
cont =

Nc

4π2f2
π

= 0.342 fm2,

〈r2〉NJL
ρ = 6/M2

ρ = 0.394 fm2,

〈r2〉NJL
e.m. = 0.736 fm2, (9)

〈r2〉exp = 0.451 ± 0.011 fm2. (10)

Now we show that in contrast, in the nonlocal models
the diagram with the intermediate vector meson is notice-
ably suppressed. In the model considered the contribu-
tions to the e.m. pion radius from diagrams in figs. 3a-d
and from diagram in fig. 3e equal 〈r2〉cont = 0.340 fm2

and 〈r2〉ρ = 0.047 fm2, respectively. Then the e.m. pion
radius becomes 〈r2〉e.m. = 0.387 fm2, that is in much bet-
ter agreement with the experimental value than the result
of the local model.

Let us consider in more detail the contribution of the
ρ-meson diagrams in both the local NJL model and the
nonlocal model. These diagrams consist of three parts: the
photon–ρ-meson transition, the ρ-meson propagator, and
the part describing the ρ → ππ vertex. Our calculations

Fig. 4. The absolute value of the charged-pion form factor in
the time-like region. The finite width of the ρ-meson is Γρ =
135 MeV [2]. Experimental data are taken from [23,24].

Fig. 5. Partial contributions to the charged-pion form fac-
tor in the time-like region from the contact and ρ-meson dia-
grams and the absolute value of the charged-pion form factor
(Im(F cont(q2)) = 0).

Fig. 6. The charged-pion form factor in the space-like region.
Partial contributions from diagrams fig. 3a (local), fig. 3b (non-
local 1), fig. 3c, d (nonlocal 2), and fig. 3e (ρ-meson) are shown.
Experimental data are taken from [25,26].
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Fig. 7. Diagrams describing the transition neutral pion radius:
a) the local contribution; b-c) nonlocal contributions; d, e) the
diagrams with vector mesons.

show that in the nonlocal quark models the first part is
more than twice smaller than in NJL, the second part does
not change, and the third part is four times smaller than
in the NJL model. The latter suppression is due to strong
q2-dependence of the amplitude occurring in the nonlocal
models. As a result, we obtain almost one-order decrease
of the ρ-meson diagram contribution in the nonlocal mod-
els with respect to the prediction of the local NJL model.

The charged-pion form factors Fγ∗π+π−(q2) in time-
like and space-like regions are shown in figs. 4-6. The
ρ-meson resonance is displayed in the time-like domain
near −q2 ≈ M2

ρ and we take into account the ρ-meson
decay width.

4 Transition radius of the neutral pion

The process π0 → γ∗γ is described by the diagrams in
fig. 7. Figures 7a-c correspond to the quark loop diagrams
with the local and nonlocal photon vertices (contact di-
agrams), whereas figs. 7d, e correspond to the diagrams
with intermediate vector meson. The amplitude of the pro-
cess has the form

Tπ0γγ∗ =
e2

4π2fπ
εµναβqν

1 q
µ
2A

α(q1)Aβ(q2)π0(p)Fπ0γγ∗(q2
1),

(11)
where q, q2, p are the two photon and the pion momentum,
respectively. The transition pion radius is defined as3

〈r2〉π0γγ∗ = −6
dFπ0γγ∗(q2

1)
dq2

1

∣∣∣∣
q2
1=0

. (12)

In the local NJL model the contact diagrams give
〈r2〉NJL

cont = 1/2m2 [13], where m is the constituent-quark
mass. Then in the NJL model without and with the π-a1

transition one gets 〈r2〉NJL
cont = 0.342 fm2 for m = 240 MeV

and 〈r2〉NJL
cont = 0.248 fm2 for m = 280 MeV [6], respec-

tively. The experimental value of the transition pion ra-
dius is [22]

〈r2〉exp
π0γγ∗ = 0.407 ± 0.051 fm2. (13)

3 The value of the transition pion radius 〈r2〉π0γ∗γ∗ does not
depend on the asymmetry ω = 2(q2

1 − q2
2)/(q

2
1 + q2

2) of photon
virtualities q2

1 and q2
2 . In the case of both off-shell photons the

derivative in the definition of radius is taken with respect to
the total virtuality of photons.

However, in the local model, the diagrams with vec-
tor mesons, figs. 7d, e, again additionally contribute as
〈r2〉NJL

ρ+ω = 6/M2
ρ = 0.394 fm2 that noticeably enlarges the

value of the transition radius in comparison with experi-
ment.

In contrast, in the nonlocal models the vector meson
diagrams are strongly suppressed. Indeed, in the model
considered one has 〈r2〉cont = 0.308 fm2 and 〈r2〉ρ+ω =
0.07 fm2, respectively. Then, we obtain 〈r2〉π0γγ∗ =
0.378 fm2 that is in satisfactory agreement with experi-
mental data.

We have to note that in the local NJL model the dia-
gram ρ → πγ provides gρ/2 ≈ 3 (in the normalization of
eq. (11)) and in the nonlocal model it gives ≈ 1.2. Taking
into account the value of photon–vector-meson couplings,
which are the same as in the case of the charged pion, we
see that in the nonlocal models the contribution of vector
mesons is more than four times smaller than in the local
model.

5 Conclusion

We would like to emphasize that nonlocal models allow
us to solve a set of problems that cannot be solved in the
local NJL models. First of all it concerns the correct de-
scription of momentum dependence of meson amplitudes
in the low-energy domain. One of the examples of that is
the calculation of electromagnetic meson radii. This prob-
lem is considered in present work.

Our calculation is devoted to the investigation of two
subjects. First, the region of the effective quark interac-
tion inside the pion is determined. The size of this region
corresponds to the electromagnetic and transition radii of
the pion. Here, we have shown that in the model consid-
ered this region is in agreement with experimental data.

Next, we study relative contributions to the pion form
factor Fγ∗π+π− and pion radii from the contact diagrams
and diagrams with vector mesons as intermediate states.
We compare these contributions to the pion radii with the
results obtained in the framework of the local NJL model.
We show that in the nonlocal models the contribution of
vector mesons is noticeably smaller than that of the con-
tact diagrams in contrast with the local NJL model where
these contributions are comparable. It is worth noting that
in the nonlocal models the additional diagrams with pho-
ton interacting nonlocally with quark appear. These dia-
grams are important for gauge invariance. The contribu-
tions of the nonlocal contact diagrams to the pion radii
have the same order of magnitude as the contributions of
the diagrams with vector mesons4. Our calculations show
that the diagram with local quark-photon vertex gives the
dominant part of the pion radii (see table 1).

We have to note finally that one expects further cor-
rections to the pion radii resulted from the so-called 1/Nc

corrections that are presumably of the same order as the
vector meson corrections considered in the present work
(see also [14]).

4 The contribution of the contact diagrams in nonlocal mod-
els is comparable with that of local models.
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Table 1. The comparison of the pion radii obtained in the
nonlocal and local quark models. The local contribution is that
from diagrams with local photon vertex (fig. 3a and fig. 7a).
The nonlocal contribution is that from diagrams with addi-
tional nonlocal photon vertex (figs. 3b-d and figs. 7b, c). The
vector meson contributions are those from diagrams with in-
termediate vector mesons (fig. 3e and figs. 7d, e).

Contribution
(fm2)

〈r2〉e.m. 〈r2〉π0γγ∗ 〈r2〉NJL
e.m. 〈r2〉NJL

π0γγ∗

Local 0.302 0.243 0.342 0.342(0.248)
Nonlocal 0.038 0.065
Vector 0.047 0.07 0.394 0.394
Total 0.387 0.378 0.736 0.736(0.642)

The vector meson diagrams play a very important role
in the description of the pion form factor Fγ∗π+π− in the
time-like region. These diagrams allow us not only to de-
scribe the ρ-meson resonance but also to obtain a correct
behavior of the form factor in the region −q2 > M2

ρ . It
should be noted that the contact and vector meson dia-
grams increase in absolute values in the region −q2 > M2

ρ ,
but they have opposite signs. As a result, the total contri-
bution decreases (see fig. 5) in agreement with the exper-
imental tendency [24].

A similar situation is observed in the nonlocal model
considered in [3]. However, in the present model there is an
additional relation between model parameters m(0) and
Λ, m(0) = Λ, governed by eq. (3). As a result, arbitrary
parameters are absent in contrast to [3]. Nevertheless, in
our model the fine-tuning that leads to cancellation of
different contributions occurs automatically in accordance
with experimental data.

In future, we plan to calculate pion electric and mag-
netic polarizabilities and π-π scattering lengths.
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16194 and the Heisenberg-Landau program. A.E.D. acknowl-
edges partial support from RFBR (Grants Nos. 01-02-16431,
03-02-17291) and INTAS (Grant No. 00-00-366).

Appendix A.

Here we present the vertices used in the above calcula-
tions. The nonlocal quark-photon vertex is

−eQ(p1 + p2)µm(p1) −m(p2)
p2
1 − p2

2

q̄(p1)q(p2)Aµ(p1 − p2),

(A.1)
while the nonlocal quark-photon-meson vertex takes the
form

eq̄(p1)q(p2)Aµ(q)gM (k)M(k)

×
(
f(p1) − f(p1 + q)
p2
1 − (p1 + q)2

f(p2)(2p1 + q)µQΓM

+
f(p2) − f(p2 − q)
p2
2 − (p2 − q)2

f(p1)(2p2 − q)µΓMQ

)
, (A.2)

where q, k, p1, p2 = p1+q+k are the momenta of the pho-
ton, meson, antiquark and quark, respectively; M is the
meson field; gM is the function describing the renormal-
ization of the meson field; the matrices ΓM are defined by

Γ a
π = iγ5τa, Γµ a

ρ = γµτa, Γµ
ω = γµ.
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